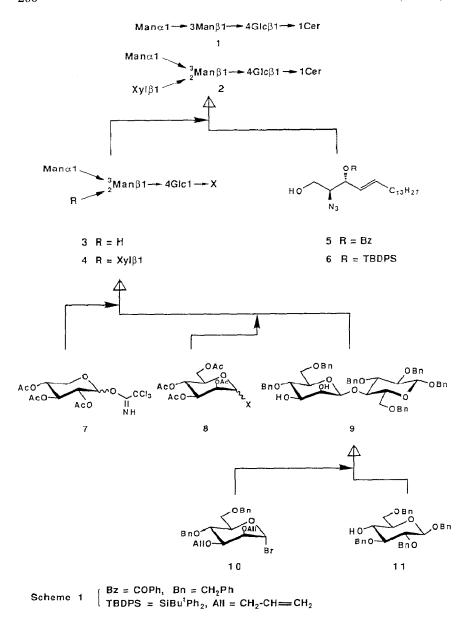
TOTAL SYNTHESIS OF THE MOLLU-SERIES GLYCOSYL CERAMIDES α -D-Manp-(1 \rightarrow 3)- β -D-Manp-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow 1)-Cer AND α -D-Manp-(1 \rightarrow 3)- $[\beta$ -D-Xylp-(1 \rightarrow 2)]- β -D-Manp-(1 \rightarrow 4)- β -D-Glcp-(1 \rightarrow 1)-Cer*

MASATO MORI, YUKISHIGE ITO, AND TOMOYA OGAWA[†]
RIKEN (The Institute of Physical and Chemical Research), Wako-shi, Saitama, 351-01 (Japan)
(Received December 20th, 1988; accepted for publication May 19th, 1989)

ABSTRACT

The mollu-series glycosphingolipids, $O-\alpha$ -D-mannopyranosyl- $(1\rightarrow 3)-O-\beta$ -D-mannopyranosyl- $(1\rightarrow 4)-O-\beta$ -D-glucopyranosyl- $(1\rightarrow 1)-2-N$ -tetracosanoyl-(4E)-sphingenine and $O-\alpha$ -D-mannopyranosyl- $(1\rightarrow 3)-O$ - $[\beta$ -D-xylopyranosyl- $(1\rightarrow 2)]-O-\beta$ -D-mannopyranosyl- $(1\rightarrow 4)-O-\beta$ -D-glucopyranosyl- $(1\rightarrow 1)-2-N$ -tetracosanoyl-(4E)-sphingenine, were synthesized for the first time by using 2,3,4-tri-O-acetyl-D-xylopyranosyl trichloroacetimidate, methyl 2,3,4,6-tetra-O-acetyl-1-thio- α -D-mannopyranoside, benzyl O-(4,6-di-O-benzyl- β -D-mannopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside 9, and (2S,3R,4E)-2-azido-3-O-(tert-butyldiphenyl-silyl)-4-octadecene-1,3-diol 6 as the key intermediates. The hexa-O-benzyl disaccharide 9 was prepared by coupling two monosaccharide synthons, namely, 2,3-di-O-allyl-4,6-di-O-benzyl- α -D-mannopyranosyl bromide and benzyl 2,3,6-tri-O-benzyl- β -D-glucopyranoside. It was demonstrated that azide 6 was highly efficient as a synthon for the ceramide part in the coupling with both glycotriaosyl and glycotetraosyl donors, particularly in the presence of trimethylsilyl triflate.

INTRODUCTION


Glycosphingolipids such as 1 and 2 were recently isolated from hepatopancreas², spermatozoa³, and ova⁴ of *Hyriopsis schlegelii*, and classified as mollu series glycosphingolipids⁵. The biological function of these glycosphingolipids in fresh water bivalves remains to be elucidated, but studies should be facilitated by the availability of synthetic samples. As part of our project on the synthesis of mannose-containing glycosphingolipids⁶, we describe here stereocontrolled total syntheses of glycolipids 1 and 2.

RESULTS AND DISCUSSION

Based upon retrosynthetic analysis, a synthetic plan for the target compounds

^{*}Part 62 in the series Synthetic Studies on Cell-surface Glycans. For Part 61, see ref. 1.

^{&#}x27;To whom inquiries should be addressed.

1 and 2 was designed as shown in Scheme 1. Synthons 5 and 6 were employed for the ceramide portion of 1 and 2 because of the high efficiency⁷ previously observed in related couplings with glycosyl donors. Compound 5 was already known⁷, and compound 6 was readily prepared as shown in Scheme 2.

The glycobiosyl synthon 9 was obtained from a mannosyl synthon 10 and a glucosyl synthon 11. An immediate precursor 21 for the mannosyl synthon 10 was readily prepared in 6 steps from compound 15, in 40% overall yield, via 16, 17, 18,

19, and 20. This sequence resulted from successive treatments with i) 2,2-dimethoxypropane and pyridinium p-toluenesulfonate in N,N-dimethylformamide(DMF)-acetone; ii) allyl bromide-tetrabutylammonium iodide-sodium hydride in DMF; iii) 67% aqueous acetic acid; iv) benzyl bromide-tetrabutylammonium iodide-sodium hydride in DMF; v) zinc in acetic acid-oxolane; and

Scheme 2

vi) 4-nitrobenzoyl chloride in pyridine. It is to be noted that both the allylation of diol 16 and the benzylation of diol 18 could only be achieved efficiently at -20° by using either allyl bromide or benzyl bromide and sodium hydride in the presence of added tetrabutylammonium iodide. The known glucosyl synthon 11 (ref. 8) was prepared from the benzylidene derivative 22 (ref. 9) via compound 23, in 68% yield, by sequential treatment with aqueous acetic acid, bis(tributyltin) oxide¹⁰, and benzyl bromide¹¹. The conversion of compound 21 into the bromide 10 by treatment with hydrogen bromide and the subsequent reaction of 10 with the glycosyl acceptor 11 in the presence of silver silicate according to Paulsen et al. 12 afforded a 77% yield of a mixture of the desired β -(1 \rightarrow 4)-linked product 24 and its α anomer 25 in a ratio of 1.1:1, together with 11% of the 1,6-anhydro derivative 26. Configurations at C-1b for 24 and 25 were assigned as β -D and α -D, respectively, from the ${}^{13}\text{C-n.m.r.}$ spectra 13 , which contained signals for C-1b at δ 100.6 with ${}^{1}J_{CH}$ 154 Hz for compound 24 and at δ 100.4 with ${}^{1}J_{CH}$ 171 Hz for compound 25. The deallylation of 24 to compound 9 was smoothly achieved in 87% yield in two steps: i) Wilkinson's catalyst and 1,4-diazabicyclo[2.2.2]octane¹⁴ in acetonitrile-ethanolwater¹⁵, and ii) mercuric oxide-mercuric chloride in aqueous acetone¹⁶. An attempted deallylation of 24 to 9 by a palladium(II) chloride-mediated procedure gave only inferior results.

The monoglycosylation of the diol 9 was then examined, using the mannosyl donors 27 (ref. 17) and 28. Cupric bromide-tetrabutylammonium bromide-silver triflate-promoted¹⁸ coupling of 9 with the thioglycoside 27 in 1,2-dichloroethane gave the best result, affording a 67% yield of a 3:2 mixture of trisaccharides 29 and 31. On the other hand, boron trifluoride etherate promoted glycosylation of 9 with the trichloroacetimidate 28 in 1,2-dichloroethane according to Schmidt¹⁹ afforded a 90% yield of 1:3.1 mixture of 29 and 31. Use of the conventional glycosyl halides in place of 27 or 28 did not improve the regioselectivity of the glycosylation in favor of O-3 (formation of 29).

The positions of the new linkages were assigned by conversion of the tri-

Scheme 3

 $Ipd = C(CH_3)_2$

Scheme

saccharides into the acetates **30** and **32**. The ¹H-n.m.r. spectrum of compound **30** showed a deshielded signal for H-2b at δ 5.646 as a doublet with a ³ $J_{2,3}$ value of 2.9 Hz, and for compound **32** a deshielded signal for H-3b at δ 4.857 as a double doublet with the ³ $J_{2,3}$ and ³ $J_{3,4}$ values of 2.8 and 10.0 Hz. The α configurations at C-1c for the trisaccharides **29** and **31** were evident from the mode of glycosylation, which employed the mannosyl donors **27** and **28** having a participating group at O-2, and confirmed by their ¹³C-n.m.r. spectra, which contained signals for C-1c at δ 99.5 with a ¹ $J_{C,H}$ value of 175 Hz for compound **29** and at δ 98.4 with a ¹ $J_{C,H}$ value of 179 Hz for compound **31**.

Since the imidate procedure for the coupling of a mannopyranosyl residue to diol 9 favored O-2 over O-3 by a ratio of 3:1, the substitution of a xylopyranosyl residue onto 9 by the imidate approach was next examined, with the expectation that the $1\rightarrow 2$ linked trisaccharide 35 might be the major product. However, boron trifluoride etherate-promoted glycosylation of compound 9 with the imidate 7 showed no regioselectivity, but gave in 95% yield a 1.4:1.3:1 mixture of the products 33, 35, and 37. The regiochemistry of the trisaccharides 33 and 35 was assigned on the basis of the 1 H-n.m.r. data of the acetate 34 (obtained from compound 33), which showed a deshielded signal for H-2b at δ 5.284 as a doublet with a $^{3}J_{2.3}$ value of 2.6 Hz. The configuration at the newly introduced anomeric carbon atom (C-1c) of compound 33 was assigned as β -D- from the 1 H-n.m.r. spectrum, which showed a signal for H-1c at δ 4.337 as a doublet with a $^{3}J_{1,2}$ value of 6.9 Hz. The configuration at C-1c of compound 35 was also assigned as β -D- because the 13 C-n.m.r. spectrum showed signals for three anomeric carbon atoms at 102.5, 100.5, and 100.0 with $^{1}J_{CH}$ values of 153–161 Hz.

The configurations at both C-1c and C-1d in compound 37 were expected to be β -D because of the presence of an acetyl group as a stereocontrolling auxiliary on O-2 of the glycosyl donor 7. The $^{13}\text{C-n.m.r.}$ spectrum of 37, however, revealed besides three signals at δ 102.5, 100.4, and 99.3 with $^{1}J_{\text{C,H}}$ values of 154 to 161 Hz that were assignable to three anomeric carbon atoms having the β -D configuration, a signal for an anomeric carbon atom at δ 95.3 with a $^{1}J_{\text{C,H}}$ value of 173 Hz. This could be rationalized as indicating that one β -xylopyranosyl residue in 37 had assumed the $^{1}C_{4}$ conformation. Further evidence was obtained by the deprotection of compound 37, which smoothly afforded the free tetrasaccharide β -D-Xyl-(1-3)-[β -D-Xyl-(1-2)]- β -D-Man-(1-4)-D-Glc. The β -D configurations for the two xylopyranosyl residues were firmly assigned according to 1 H-n.m.r. data which showed a pair of doublets for H-1d at δ 4.610 and 4.582 with a $^{3}J_{1,2}$ value of 7.6 Hz, corresponding to the α -D and β -D configurations at C-1a, and a doublet for H-1c at δ 4.528 with $^{3}J_{1,2}$ value of 7.3 Hz.

To achieve a total synthesis of the target compound 1, the conversion of trisaccharide 29 into the glycosyl donor 40 was performed in a conventional manner. First, hydrogenolysis of compound 29 in the presence of 10% Pd–C in methanol and subsequent acetylation gave an 81% yield of the completely acetylated product 38 as a 1:1 mixture of α and β -anomers at C-1a. This was further treated with

Scheme 5

	1 ^C ₁₃ H₂7						
	OR3 OR1	£ }	Ac	Ac	r	Ac	I
	10 B30 01	B ² ⟨iii	TBDPS N ₃ Ac	NHCOC23H47	NHCOC23H47	ž	
OH3		ĘŒ	TBDPS	TBDPS	I	82	Ι
R ³ 0 OR ³	R ³ 0,		57	58	N	59	09
-	H ³ O						
	5 or 6						
	OR ²	. 22	AC	Ξ	Ac	Ac	Ac
	200	Z Z	8	I	Ac	Ac	
O Pro	0,0	æ	Bn	Ξ	Ac	I	CNHCCI ₃ (a)
R ³ O O O	R30 R30 C R20		52	53	54	55	56
	~						
	29						

Scheme 6

hydrazine acetate according to Excoffier et al.²⁰ to yield 86% of hemiacetal 39. Then, treatment of compound 39 with trichloroacetonitrile¹⁹ in the presence of 1,8diazabicyclo [5.4.0] undec-7-ene (DBU) afforded an 88% yield of the α -imidate 40. Boron trifluoride etherate-promoted glycosylation of acceptor 6 with 40 in 1,2dichloroethane gave an orthoester (44) as the major product (59% yield), as well as the desired product 41 in 5% yield. However, when the orthoester 44 was treated with trimethylsilyl triflate²¹ at 0°, compound 41 was formed in 40% yield. The choice of the promoter was crucial for this glycosylation. The use of trimethylsilyl triflate in place of boron trifluoride etherate gave the desired coupling product 41 directly in 51% yield from the imidate 40 and the glycosyl acceptor 6. The configuration at C-1a of compound 41 was assigned from its ¹H-n.m.r. spectrum, which contained a signal for H-1a at δ 4.335 as a doublet with a ${}^3J_{1,2}$ value of 7.8 Hz. The structure of compound 41 was further confirmed by deprotection to 43, the 1Hn.m.r. spectrum of which showed three signals for three anomeric protons. These were at δ 4.920, doublet with a ${}^{3}J_{1,2}$ value of 1.7 Hz for H-1c, δ 4.560, singlet for H-1b, and δ 4.222, doublet with ${}^3J_{1,2}$ 7.8 Hz for H-1a.

The transformation of compound 41 into the target 1 was achieved via 42 in 34% overall yield as previously described for related compounds⁷. The azido group was reduced in the presence of Lindlar catalyst²², and the resulting amino group was acylated with tetracosanoic acid, 2-chloro-2-methylpyridinium iodide, and tributylamine according to the Mukaiyama procedure²³ to give the fully protected hexotriaosyl ceramide 42. Deprotection of compound 42 afforded the target glycosyl ceramide 1.

As for the regioisomeric trisaccharide 31, conversion into the imidate 47 was performed in four steps in 83% overall yield in the same way as discussed for the imidate 40. Coupling of the imidate 47 with the benzoate 5 in the presence of boron trifluoride etherate gave a 32% yield of the desired compound 48, along with a 10% yield of the orthoester 51. Compound 48 was then converted into hexotriaosyl ceramide 50, an isomer of the target 1, in 24% overall yield.

The introduction of a β -D-xylopyranosyl residue into the partially protected trisaccharide **29** was achieved by the use of imidate **7** in the presence of boron trifluoride etherate to afford a 60% yield of the fully protected tetrasaccharide **52**. The presence of a xylosyl residue was evident from the ¹³C-n.m.r. data, which revealed four signals for four anomeric carbon atoms. The configuration at C-1d was assigned by deprotection to the free tetrasaccharide **53**. The ¹H-n.m.r. spectrum of **53** in D₂O contained two signals for H-1d at δ 4.521 and 4.496, as a pair of doublets with ³J_{1,2} values of 7.6 Hz, corresponding to the α -D- and β -D-configuration at the reducing end (C-1a).

The conversion of compound 52 into the imidate 56 was accomplished as discussed above for the imidates 40 and 47, in four steps in 64% overall yield. The crucial coupling between the imidate 56 and acceptors 5 and 6 was performed in the presence of trimethylsilyl triflate, to give the fully protected products 57 and 59 in 68 and 64% yields, respectively. Finally, compound 57 was converted into the

target glycotetraosyl ceramide 2 via 58 in 32% overall yield. Compound 59 was transformed into the corresponding deblocked compound (60) and the structure was confirmed by ¹H-n.m.r. data.

The results discussed above demonstrated that trimethylsilyl triflate was superior to boron trifluoride etherate as a catalyst for the crucial coupling between the glycosyl imidates and glycosyl acceptors 5 and 6. Since good agreement was observed between the ¹H-n.m.r. data for synthetic 1 and 2 with those for natural 1 and 2 (ref. 3), as well as data for related glycosphingolipids²⁴, the synthetic evidence, provided here for the first time, strongly supports the structures assigned to these mollu-series glycosphingolipids.

EXPERIMENTAL

General. — Melting points were determined with a Yanagimoto micro melting-point apparatus and are uncorrected. Optical rotations were determined with a Perkin–Elmer Model 241 MC polarimeter, for solutions in CHCl₃ at 25°, unless noted otherwise. Ordinary column chromatography was performed on Silica Gel (Merck 70–230 mesh). For flash chromatography, columns of Wako-gel C-300 (200–300 mesh) were used. T.l.c. and high-performance (h.p.) t.l.c. were performed on Silica Gel 60 F₂₅₄ (Merck). Molecular sieves were purchased from Nakarai Chemicals. N.m.r. spectra were recorded with JEOL GX400 (1 H, 400 MHz) and FX90Q (13 C, 22.50 MHz) spectrometers. Values of $\delta_{\rm C}$ and $\delta_{\rm H}$ are expressed in p.p.m. downfield from the signal for Me₄Si, measured directly for solutions in CDCl₃. For solutions in D₂O, $\delta_{\rm H}$ was measured from internal Me₂CO (2.225 p.p.m.) or Me₃COH (1.230 p.p.m.), and $\delta_{\rm C}$ from internal dioxane (67.4 p.p.m.) or MeOH (49.8 p.p.m.), respectively.

(2S,3R,4E)-2-azido-1-O-trityl-4-octadecene-1,3-diol (13). —A solution of compound 24a 12 (107 mg, 330 μmol) and trityl chloride (109 mg, 390 μmol) in pyridine (2.0 mL) was stirred for 60 h at 20°, then for 14 h at 65° under argon, and diluted with EtOAc (80 mL). The solution was washed with aqueous NaHCO₃, aqueous NaCl, dried (MgSO₄), and evaporated *in vacuo*. Chromatography of the residue on SiO₂ in 90:10:1 hexane–EtOAc–Et₃N and coevaporation of the fractions with toluene gave 13 (149 mg, 82%); [α]_D +6.6° (c 1.5); R_F 0.23 in 10:1 hexane–EtOAc; n.m.r. data: δ_H 7.5–7.2 (m, 15 H, Ph-H), 5.649 (td, 1 H, *J* 6.8, 15.4 Hz, H-5), 5.318 (dd, 1 H, *J* 7.2, 15.4 Hz, H-4), 4.192 (t, 1 H, *J* 5.6 Hz, H-3), 3.525 (q, 1 H, *J* 5.6 Hz, H-2), 3.314 (dd, 1 H, *J* 5.6, 12.0 Hz, H-1), 3.284 (dd, 1 H, *J* 5.6, 12.0 Hz, H-1'), 1.945 (q, 2 H, *J* 6.8 Hz, H-6), and 0.880 (t, 3 H, *J* 7.0 Hz, CH₂CH₃).

Anal. Calc. for $C_{37}H_{49}N_3O_2 \cdot 0.5 C_6H_5CH_3$: C, 79.24; H, 8.87; N, 6.85. Found: C, 79.20; H, 8.81; N, 6.98.

(2S,3R,4E)-2-Azido-3-O-(tert-butyldiphenylsilyl)-4-octadecene-1,3-diol (6). — To a mixture of compound **13** (969 mg, 1.71 mmol) and imidazole (178 mg, 2.61 mmol) in N,N-dimethylformamide (DMF, 3 mL) was added a solution of t-BuPh₂SiCl (790 μ L, 3.1 mmol) in DMF (7 mL). The mixture was stirred for 44 h

at 20°, and diluted with Et₂O. The solution was washed with H₂O, dried (MgSO₄), and evaporated *in vacuo* to give crude **14**; R_F 0.72 in 10:1 hexane–EtOAc. A solution²⁵ of the compound in 3:2 HCOOH–Et₂O (2 mL) was stirred for 20 min at 20°, then diluted with EtOAc. The organic layer was washed with aqueous NaHCO₃, water, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 5:1 hexane–Et₂O to give **6** (630 mg, 66%); $[\alpha]_D$ –65.8° (c 1.0); R_F 0.26 in 5:1 hexane–Et₂O; n.m.r. data: δ_H 7.75–7.6 (m, 4 H, Ph-H), 7.5–7.3 (m, 6 H, Ph-H), 5.421 (dd, 1 H, J 8.3, 15.4 Hz, H-4), 5.161 (td, 1 H, J 6.6, 15.4 Hz, H-5), 4.171 (dd, 1 H, J 4.1, 8.3 Hz, H-3), 3.583 (dd, 1 H, J 4.1, 7.5 Hz, H-2), 1.065 [s, 9 H, C(C H_3)₃], 0.882 (t, 3 H, J 6.6 Hz, CH₂C H_3).

Anal. Calc. for $C_{34}H_{53}N_3O_2Si$: C, 72.42; H, 9.47; N, 7.45. Found: C, 72.47; H, 9.47; N, 7.41.

2,2,2-Trichloroethyl 4,6-O-isopropylidene- α -D-mannopyranoside (16). — To an ice-cold solution of compound⁶ 15 (13.35 g, 42.8 mmol) and 2,2-dimethoxy-propane (DMP; 13.3 mL, 108 mmol), in DMF (207 mL)-acetone (68 mL) was added pyridinium *p*-toluenesulfonate²⁶ (PPTS, 747 mg). The mixture was stirred for 4 days at 5°, with the addition of further DMP (4.2 mL) at every 24 h interval. The reaction mixture was treated with Amberlite IRA 400, filtered through Celite, and evaporated *in vacuo*. The residue was crystallized from Et₂O-hexane to give 16 (12.8 g, 85%); m.p. 124–125°, $[\alpha]_D$ +57.4° (*c* 1.0, MeOH); R_F 0.31 in 1:1 toluene–EtOAc; n.m.r. data: δ_H 5.116 (d, 1 H, $J_{1,2}$ 1.2 Hz, H-1), 4.239 (d, 1 H, $J_{1,2}$ Hz, CH_2CCl_3), 4.209 (m, 1 H, H-2), 4.112 (d, 1 H, $J_{1,2}$ Hz, CH_2CCl_3), 1.535 (s, 3 H, CCH_3), 1.435 (s, 3 H, CCH_3).

Anal. Calc. for C₁₁H₁₇O₆Cl₃: C, 37.58; H, 4.87. Found: C, 37.68; H, 4.95.

Acetylation of **16** gave a diacetate; n.m.r. data: $\delta_{\rm H}$ 5.448 (dd, 1 H, $J_{1,2}$ 1.5, $J_{2,3}$ 3.7 Hz, H-2), 5.303 (dd, 1 H, $J_{2,3}$ 3.7 Hz, $J_{3,4}$ 10.3 Hz, H-3), 5.011 (d, 1 H, $J_{1,2}$ 1.5 Hz, H-1), 4.232 (d, 1 H, J 11.5 Hz, CH₂CCl₃), 4.122 (d, 1 H, J 11.5 Hz, CH₂CCl₃), 4.070 (t, 1 H, J 10.5 Hz, H-4), 2.180, 2.043 (2 s, 6 H, COCH₃), 1.538, and 1.406 (2 s, 6 H, CCH₃).

2,2,2-Trichloroethyl 2,3-di-O-allyl-4,6-O-isopropylidene- α -D-mannopyranoside (17). — To a stirred mixture of compound 16 (12.0 g, 34.1 mmol), allyl bromide (58.8 mL, 682 mmol) and Bu₄NI (1.17 g, 3 mmol) in DMF (200 mL) was added NaH (60%, 3.26 g, 82 mmol) portionwise at -20 to -25° (dry ice-CCl₄ bath). The mixture was stirred for 4.5 h at -20 to -25°, and methanol was added dropwise to destroy the excess NaH. The mixture was diluted with Et₂O, washed with water, dried (MgSO₄), and evaporated in vacuo. Chromatography of the residue on SiO₂ in 12:1 toluene-EtOAc gave 17 (13.1 g, 89%); [α]_D +67.1° (c 1.4); R_F 0.38 in 12:1 toluene-EtOAc; n.m.r. data: δ _H 5.99-5.86 (m, 2 H, CH₂CH=CH₂), 5.053 (d, 1 H, J 1.5 Hz, H-1), 1.538, and 1.417 (2 s, 6 H, CCH₃).

Anal. Calc. for $C_{17}H_{25}O_6Cl_3$: C, 47.29; H, 5.84; Cl, 24.63. Found: C, 46.85; H, 5.79; Cl, 24.26.

2,2,2-Trichloroethyl 2,3-di-O-allyl-α-D-mannopyranoside (18). — A solution of compound 17 (3.56 g, 8.2 mmol) in 67% aqueous AcOH was stirred for 1 h at

70°, and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 1:1 toluene–EtOAc to give **18** (2.90 g, 91%); $[\alpha]_D$ +36.5° (c 0.8); R_F 0.25 in 1:1 toluene–EtOAc; n.m.r. data: δ_H 6.0–5.85 (m, 2 H, CH₂CH=CH₂), 5.132 (d, 1 H, J 1.7 Hz, H-1).

Anal. Calc. for C₁₄H₂₁O₆Cl₃: C, 42.93; H, 5.40. Found: C, 42.54; H, 5.28.

2,2,2-Trichloroethyl 2,3-di-O-allyl-4,6-di-O-benzyl-α-D-mannopyranoside (19). — To a stirred mixture of compound 18 (2.12 g, 5.4 mmol), benzyl bromide (5.55 g, 32.5 mmol), and Bu₄NI (210 mg, 0.54 mmol) in DMF (40 mL) was added NaH (60%, 517 mg, 13 mmol) portionwise at -20° (dry ice-CCl₄ bath). Work-up as described for 17 and chromatography of the residue on SiO₂ in 2:1 toluene-EtOAc afforded 19 (2.35 g, 76%); [α]_D +64.2° (c 0.8); R_F 0.47 in 4:1 hexane-EtOAc; n.m.r. data: δ_H 6.0–5.9 (m, 2 H, CH₂-CH=CH₂), 5.135 (d, 1 H, J 1.8 Hz, H-1), 4.860 (d, 1 H, J 10.7 Hz, CH₂Ph), 4.642 (d, 1 H, J 12.0 Hz, CH₂Ph), 4.527 (d, 1 H, J 12.0 Hz, CH₂Ph), 4.487 (d, 1 H, J 10.7 Hz, CH₂Ph), 4.219 (d, 1 H, J 11.6 Hz, CH₂CCl₃), 4.109 (d, 1 H, J 11.6 Hz, CH₂CCl₃).

Anal. Calc. for C₂₈H₃₃O₆Cl₃: C, 58.80; H, 5.82. Found: C, 58.78; H, 5.74.

2,3-Di-O-allyl-4,6-di-O-benzyl-D-mannopyranose (20). — A mixture of compound 19 (280 mg, 0.49 mmol) and Zn powder (420 mg, 6.4 mmol) in 2:5 AcOH-oxolane (7 mL) was stirred for 22 h at 20°, diluted with Et₂O, and filtered through Celite. The filtrate was washed with H_2O , aqueous NaHCO₃, aqueous NaCl, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 4:1 toluene–EtOAc to give 20 (174 mg, 81%); R_F 0.41 in 7:3 toluene–EtOAc; n.m.r. data: δ_H 7.4–7.2 (m, 10 H, Ph-H), and 6.02–5.88 (m, 2 H, CH₂CH=CH₂).

Anal. Calc. for $C_{26}H_{32}O_6\cdot 0.1$ $C_6H_5CH_3$: C, 71.30; H, 7.35. Found: C, 71.32; H, 7.41.

2,3-Di-O-allyl-4,6-di-O-benzyl-D-mannopyranosyl p-nitrobenzoate (21). — To a solution of compound 20 (3.7 g, 8.4 mmol) in pyridine (12 mL) was added p-nitrobenzoyl chloride (2.96 g, 16 mmol), portionwise at -5-0°. After the mixture was stirred for 2 h at 20°, water (2 mL) was added, stirring for was continued 20 min, and the mixture was diluted with EtOAc. This solution was washed with water, aqueous NaHCO₃, water, dried (MgSO₄), and evaporated in vacuo. The residue was chromatographed on SiO₂ in 4:1 hexane-EtOAc to give 21α (4.26 g, 86%) and 21β (0.42 g, 8.5%).

Compound **21** α had m.p. 76–77° (EtOAc–hexane); $[\alpha]_D$ +66.5° (c 0.7); R_F 0.46 in 4:1 hexane–EtOAc; n.m.r. data: δ_H 8.285 (d, 2 H, J 8.9 Hz) and 8.158 (d, 2 H, J 8.9 Hz) for COPhNO₂, 6.463 (d, 1 H, J 1.9 Hz, H-1), and 6.04–5.91 (m, 2 H, CH₂-CH=CH₂).

Anal. Calc. for $C_{33}H_{35}NO_9$: C, 67.22; H, 5.98; N, 2.38. Found: C, 67.20; H, 5.91; N, 2.33.

Compound **21** β had $[\alpha]_D$ -16.9° (c 1.1); R_F 0.36 in 4:1 hexane–EtOAc; n.m.r. data: δ_H 5.927 (d, 1 H, J 1.2 Hz, H-1).

Anal. Found: C, 67.29; H, 5.90; N, 2.43.

Benzyl 2,3,6-tri-O-benzyl- β -D-glucopyranoside (11). — A solution of com-

pound⁹ **22** (660 mg, 1.2 mmol) in 80% aqueous AcOH (18 mL) was stirred for 1 h at 95°, then evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 1:1 EtOAc-toluene to give **23** (462 mg, 86%), $[\alpha]_D$ -40.3° (c 1.0); R_F 0.29 in 1:1 toluene–EtOAc.

A mixture of compound **23** (2.0 g, 4.4 mmol) and $(Bu_3Sn)_2O$ (2.7 g, 4.5 mmol) in toluene (80 mL) was stirred under reflux with continuous azeotropic removal of H_2O for 2 h, and then concentrated *in vacuo*. A mixture of the residue and Bu_4NBr (100 mg, 0.3 mmol) in benzyl bromide (15 mL) was stirred for 15 h at 90°, and then evaporated *in vacuo*. A solution of the residue in EtOAc was stirred with aqueous KF and filtered through Celite. The organic layer was separated, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO_2 in 4:1 hexane–EtOAc to give **11** (1.9 g, 80%); m.p. 59–60° (hexane); $[\alpha]_D$ –40.3° (c 9.0); R_F 0.29 in 9:1 toluene–EtOAc; n.m.r. data: δ_H 7.2–7.4 (m, 20 H, Ph-H), 4.531 (d, 1 H, $J_{1,2}$ 7.3 Hz, H-1).

Anal. Calc. for C₃₄H₃₆O₆: C, 75.53; H, 6.71. Found: C, 75.19; H, 6.63.

Benzyl O-(2,3-di-O-allyl-4,6-di-O-benzyl- β - (24) and $-\alpha$ - (25) -D-mannopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside. — To a saturated solution of HBr in CH₂Cl₂ (5 mL) was added dropwise a solution of compound 21 (10:1 mixture of α and β anomers; 1.44 g, 2.4 mmol) in CH₂Cl₂ (8 mL) at -15°. The mixture was stirred for 30 min at -15° , then hexane (4 mL) was added. This mixture was filtered through Celite and evaporated, and the residue was subjected to three additions and evaporations of benzene, to give unstable 10 (1.2 g); $R_{\rm F}$ (at -40°) 0.57 in 4:1 hexane-EtOAc. A stirred mixture of compound 11 (500 mg, 0.92 mmol), Ag silicate (2.5 g), and molecular sieves 4A (MS4A, 2.5 g) in CH₂Cl₂ (4.5 mL) was cooled to -45° (dry ice-MeCN bath), and to this was added dropwise a solution of the bromide (10) in CH₂Cl₂ (4.5 mL). The mixture was stirred for 15 h at 20°, diluted with EtOAc (80 mL), and filtered through Celite. The filtrate was washed with aqueous NaHCO₃, water, aqueous NaCl, dried (MgSO₄), and evaporated in vacuo. The residue was chromatographed on SiO2 in 9:1 toluene-EtOAc to give 24 (353 mg, 40%), 25 (329 mg, 37%), and 26 (33 mg, 4%). The use of toluene or nitromethane as the solvent for the reaction instead of CH₂Cl₂ afforded 24 and 25 in 16 and 48%, or 17 and 36% yields, respectively.

Compound 24 had $[\alpha]_D$ -8.1° (c 1.0); R_F 0.33 in 9:1 toluene–EtOAc; n.m.r. data: δ_H 7.5–7.0 (m, 30 H, Ph-H), 6.0–5.85 (m, 2 H, CH₂-CH=CH₂); δ_C 102.6 (${}^1\!J_{\rm C,H}$ 158 Hz, C-1a) and 100.6 (${}^1\!J_{\rm C,H}$ 154 Hz, C-1b).

Anal. Calc. for $C_{60}H_{66}O_{11}\cdot 0.33~H_2O$: C, 74.36; H, 6.93. Found: C, 74.15; H, 6.76.

Compound **25** had m.p. 54–55° (toluene–hexane); $[\alpha]_{\rm D}$ +4.0° (c 1.0); $R_{\rm F}$ 0.48 in 9:1 toluene–EtOAc; n.m.r. data: $\delta_{\rm H}$ 7.5–7.0 (m, 30 H, Ph-H), 5.97–5.83 (m, 1 H, CH₂CH=CH₂), and 5.70–5.59 (m, 1 H, CH₂CH=CH₂); $\delta_{\rm C}$ 102.1 ($^{1}J_{\rm C,H}$ 159 Hz, C-1a) and 100.4 ($^{1}J_{\rm C,H}$ 171 Hz, C-1b).

Anal. Calc. for $C_{60}H_{66}O_{11}$: C, 74.82; H, 6.91. Found: C, 74.45; H, 6.85. Compound **26** had R_F 0.14 in 9:1 toluene-EtOAc; n.m.r. data: δ_H 7.5–7.3

(m, 5 H, Ph-H), 6.0–5.8 (m, 2 H, CH_2 -CH= CH_2), 5.470 (s, 1 H, H-1), 5.33–5.16 (m, 4 H, CH= CH_2), 4.678 (d, 1 H, J 12.5 Hz, CH_2 Ph), 4.640 (d, 1 H, J 12.5 Hz, CH_2 Ph).

Benzyl O-(4,6-di-O-benzyl-β-D-mannopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl-β-D-glucopyranoside (9). — A solution of compound 24 (2.6 g, 2.7 mmol) in 10:5:1 MeCN-EtOH-H₂O (180 mL) was stirred by passage of N₂ for 1 h at 70°. To this solution was then added (Ph₃P)₃RhCl (849 mg, 918 μmol) and 1,4-diazabicyclo[2.2.2]octane (DABCO; 436 mg, 3.89 mmol), and the mixture was stirred for 45 h at 85° under N₂, when t.l.c. revealed the product as a spot having R_F 0.40 in 9:1 toluene-EtOAc. The mixture was concentrated *in vacuo*, and the residual oil (4.5 g) was stirred with HgCl₂ (7.33 g, 27 mmol), and HgO (216 mg, 1.0 mmol) in 10:1 acetone-H₂O (125 mL) for 4 h at 25°. The suspension was filtered through Celite, the filtrate was concentrated *in vacuo*, the residue was dissolved in CHCl₃, and the solution was washed with 10% aqueous KI and aqueous NaCl, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 7:3 toluene-EtOAc to give 9 (2.074 g, 87%); m.p. 112–113° (toluene-hexane); [α]_D -1.0° (c 1.0); R_F 0.20 in 7:3 toluene-EtOAc; n.m.r. data: δ_H 7.5–7.1 (m, 30 H, Ph-H), 4.678 (s, 1 H, H-1b), and 4.502 (d, 1 H, J 7.6 Hz, H-1a).

Anal. Calc. for C₅₄H₅₈O₁₁: C, 73.45; H, 6.62. Found: C, 73.31; H, 6.63.

Acetylation of **9** afforded a diacetate; n.m.r. data: $\delta_{\rm H}$ 5.376 (d, 1 H, $J_{2,3}$ 3.1 Hz, H-2b), 4.886 (dd, 1 H, $J_{2,3}$ 3.1, $J_{3,4}$ 9.8 Hz, H-3b), 4.788 (s, 1 H, H-1b), 4.460 (d, 1 H, $J_{1,2}$ 7.6 Hz, H-1a).

2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyl trichloroacetimidate (28). — A solution of 1,2,3,4,6-penta-O-acetyl-D-mannopyranose²⁷ (3.5 g, 9 mmol) and NH₂NH₂· AcOH (1.07 g, 1.7 mmol) in DMF (10 mL) was stirred for 10 min at 50° and, after cooling to 20°, diluted with EtOAc. The solution was washed with H₂O, aqueous NaHCO₃, aqueous NaCl, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 2:1 toluene–EtOAc to give 2,3,4,6-tetra-O-acetyl-D-mannopyranose as an oil (3.0 g, 96%); R_F 0.21 in 1:1 hexane–EtOAc. A solution of this oily hemiacetal (500 mg, 1.44 mmol) in Cl(CH₂)₂Cl (2 mL), stirred under argon, was treated successively with CCl₃CN (2.1 g, 14.5 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU; 22 mg, 0.14 mmol) at 0°. After being stirred for 2 h at 0°, the mixture was directly chromatographed on SiO₂ in 1:1 hexane–EtOAc to give 28 (702 mg, 99%); [α]_D +46.5° (c 0.5); R_F 0.26 in 1:1 hexane–EtOAc; n.m.r. data: δ ₁₁ 8.783 (s, 1 H, C=NH), 6.281 (d, 1 H, J_{1,2} 2.0 Hz, H-1), 5.475 (dd, 1 H, J_{1,2} 2.0, J_{2,3} 2.9 Hz, H-2), 2.203, 2.087, 2.071, and 2.013 (4 s, 12 H, COCH₃); δ _C 94.7 (J_{C,H} 179 Hz, C-1).

Anal. Calc. for $C_{16}H_{19}NO_8Cl_3$: C, 39.01; H, 4.09; N, 2.84. Found: C, 39.01; H, 4.06; N, 2.80.

Benzyl O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)-(1 \rightarrow 3)-O-(4,6-di-O-benzyl- β -D-mannopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (29) and benzyl O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)-(1 \rightarrow 2)-O-(4,6-di-O-benzyl- β -D-mannopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-benzyl- β -D-glucopyranoside (31).

- (A). To a mixture of MS4A (1.6 g), silver triflate (AgOTf; 191 mg, 743 μmol), CuBr₂ (166 mg, 743 μmol), and Bu₄NBr (80 mg, 250 μmol) was added a solution of compound **27** (187 mg, 495 μmol) and compound **9** (243 mg, 275 μmol) in Cl(CH₂)₂Cl (8 mL). The mixture was stirred for 6 h at 25°, then diluted with EtOAc and filtered. The filtrate was washed with aqueous NaHCO₃ and aqueous NaCl, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 5:4 hexane–EtOAc to give **29** (134 mg, 40%), **31** (88 mg, 27%), and recovered **9** (70 mg, 29%).
- (B). To a stirred mixture of compound 9 (111 mg, 126 μ mol) and MS AW300 (300 mg) in Cl(CH₂)₂Cl (4 mL) were added successively, at -20° , a solution of compound 28 (93 mg, 190 μ mol) in Cl(CH₂)₂Cl (4 mL) and then a solution of BF₃·Et₂O (4.7 μ L, 38 μ mol) in Cl(CH₂)₂Cl (1 mL). The reaction mixture was stirred for 1.5 h at -20° , then for 3 h at 20°, neutralized with Et₃N (20 μ L), diluted with EtOAc, and filtered through Celite. The filtrate was washed with aqueous NaHCO₃ and aqueous NaCl, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 5:1 CCl₄-acetone to give 29 (33 mg, 22%) and 31 (98 mg, 68%).

Compound **29** had $[\alpha]_D$ +7.7° (c 1.4); R_F 0.29 in 5:4 hexane–EtOAc and 0.53 in 4:1 CCl₄–acetone; n.m.r. data: δ_H 5.451 (dd, 1 H, $J_{2,3}$ 3.4, $J_{3,4}$ 10.0 Hz, H-3c), 5.300 (t, 1 H, $J_{3,4}$, $J_{4,5}$ 10.0 Hz, H-4c), 5.300 (dd, 1 H, $J_{1,2}$ 2.0, $J_{2,3}$ 3.4 Hz, H-2c), 4.956 (d, 1 H, $J_{1,2}$ 2.0 Hz, H-1c), 4.585 (s, 1 H, H-1b), 4.484 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1a), 2.145, 2.056, 2.048, and 1.996 (4 s, 12 H, COC H_3); δ_C 102.6 (${}^1J_{C,H}$ 159 Hz, C-1a), 99.5 (${}^1J_{C,H}$ 175 Hz, C-1c), 98.9 (${}^1J_{C,H}$ 158 Hz, C-1b), 62.7 (C-6c), and 20.8 (4 C, COC H_3).

Anal. Calc. for C₆₈H₇₈O₂₀; C, 67.20; H, 6.48. Found: C, 66.80; H, 6.32.

Acetylation of **29** gave **30**; n.m.r. data: $\delta_{\rm H}$ (C₆D₆), 5.770 (t, 1 H, $J_{3,4}$ 10.0 Hz, H-4c), 5.690 (dd, 1 H, $J_{1,2}$ 1.7, $J_{2,3}$ 3.2 Hz, H-2c), 5.666 (dd, 1 H, $J_{2,3}$ 3.2, $J_{3,4}$ 10.0 Hz, H-3c), 5.646 (d, 1 H, $J_{2,3}$ 2.9 Hz, H-2b), 5.292 (d, 1 H, $J_{1,2}$ 1.7 Hz, H-1c), 4.761 (s, 1 H, H-1b), 1.982, 1.824, 1.698, 1.634, and 1.540 (5 s, 15 H, COC H_3).

Compound **31** had $[\alpha]_D$ -5.1° (c 1.6); R_F 0.47 in 4:1 CCl₄-acetone; n.m.r. data: δ_H 5.427 (dd, 1 H, $J_{1,2}$ 1.7, $J_{2,3}$ 3.2 Hz, H-2c), 5.374 (dd, 1 H, $J_{2,3}$ 3.4, $J_{3,4}$ 10.0 Hz, H-3c), 5.295 (t, 1 H, J 10.0 Hz, H-4c), 5.100 (d, 1 H, $J_{1,2}$ 1.7 Hz, H-1c), 2.147, 2.021, 1.967, and 1.806 (4 s, 12 H, COC H_3); δ_C 102.7 ($^1J_{C,H}$ 158 Hz, C-1a), 99.4 ($^1J_{C,H}$ 158 Hz, C-1b), 98.4 ($^1J_{C,H}$ 179 Hz, C-1c), and 62.8 (C-6c).

Anal. Calc. for C₆₈H₇₈O₂₀: C, 67.20; H, 6.47. Found: C, 67.18; H, 6.37.

Acetylation of **31** gave **32**; n.m.r. data: $\delta_{\rm H}$ 5.412 (dd, 1 H, $J_{2,3}$ 3.4 Hz, $J_{3,4}$ 10.0 Hz, H-3c), 5.401 (d, 1 H, $J_{2,3}$ 3.4 Hz, H-2c), 5.328 (t, 1 H, $J_{3,4}$, $J_{4,5}$ 10.0 Hz, H-4c), 4.882 (s, 1 H, H-1c), 4.857 (dd, 1 H, $J_{2,3}$ 2.8, $J_{3,4}$ 10.0 Hz, H-3b), 2.161, 2.012, 1.987, 1.979, and 1.794 (5 s, 15 H, COC H_3).

2,3,4-Tri-O-acetyl- α - and - β -D-xylopyranosyl trichloroacetimidate (7 α and 7 β). — A solution of 1,2,3,4-tetra-O-acetyl-D-xylopyranose (2.48 g, 7.8 mmol) and NH₂NH₂·AcOH (940 mg, 10.2 mmol) in DMF (8 mL) was stirred for 15 min at 55°. After cooling to 20° the mixture was diluted with EtOAc, washed with H₂O,

aqueous NaHCO₃, and aqueous NaCl, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 1:1 toluene–EtOAc to give 2,3,4-tri-O-acetyl-D-xylopyranose as an oil (1.6 g, 75%); R_F 0.36 in 1:1 toluene–EtOAc. To a solution of the oily hemiacetal (607 mg, 2.2 mmol) in Cl(CH₂)₂Cl (8 mL), stirred under argon at -20° , was added CCl₃CN (3.2 g, 22 mmol) and DBU (34 mg, 0.22 mmol). The mixture was stirred for 4 h at -20° , then chromatographed on SiO₂ in 1:1 toluene–EtOAc to give 7α (770 mg, 82%) and 7β (156 mg, 16%).

Compound 7α had $[\alpha]_D$ +81.7° (c 1.9); R_F 0.39 in 2:1 hexane-toluene; n.m.r. data: δ_H 8.673 (s, 1 H, C=NH), 6.485 (d, 1 H, J 3.7 Hz, H-1), 5.582 (t, 1 H, J_{2,3}, J_{3,4} 9.8 Hz, H-3), 5.062 (dd, 1 H, J_{1,2} 3.7, J_{2,3} 9.8 Hz, H-2), 4.001 (dd, 1 H, J_{4,5} 6.2, J_{5,5} 10.5 Hz, H-5eq), 3.795 (t, 1 H, J 10.5 Hz, H-5eq), 2.055 (s, 6 H, COCH₃), and 2.018 (s, 3 H, COCH₃).

Anal. Calc. for $C_{13}H_{16}NO_8Cl_3$: C, 36.97; H, 3.84; N, 3.34. Found: C, 37.31; H, 3.85; N, 3.15.

Compound 7β had [α]_D -21.3° (c 0.5); $R_{\rm F}$ 0.28 in 2:1 hexane–EtOAc; n.m.r. data: $\delta_{\rm H}$ 8.710 (s, 1 H, C=NH), 6.025 (d, 1 H, $J_{1,2}$ 4.4 Hz, H-1), 5.168 (t, 1 H, J 5.8 Hz, H-3), 5.126 (t, 1 H, J 5.0 Hz, H-2), 4.942 (q, 1 H, J 5.6 Hz, H-4), 4.304 (dd, 1 H, $J_{4,5}$ 3.9, $J_{5,5}$ 12.5 Hz, H-5eq), 3.705 (dd, 1 H, $J_{4,5}$ 5.5, $J_{5,5}$ 12.5 Hz, H-5ax), 2.111, 2.101, and 2.098 (3 s, 9 H, COC H_3).

Benzyl O-(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)-(1→3)-O-(4,6-di-O-benzyl-β-D-mannopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (33), benzyl O-(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)-(1→2)-O-(4,6-di-O-benzyl-β-D-mannopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (35), and benzyl O-(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)-(1→3)-O-[(2,3,4-tri-O-acetyl-β-D-xylopyranosyl)-(1→2)]-O-(4,6-di-O-benzyl-β-D-mannopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (37). — To a stirred mixture of MS AW300 (500 mg) and compound 9 (126 mg, 143 μmol) in Cl(CH₂)₂Cl (3 mL), cooled to -20° (dry ice-CCl₄ bath), was added a solution of compound 7 (96 mg, 0.23 mmol) in Cl(CH₂)₂Cl (2 mL), then dropwise a solution of BF₃· Et₂O (5.6 μL, 45 μmol) in Cl(CH₂)₂Cl (1 mL). The reaction mixture was stirred for 1 h at -20°, then for 5 h at 20°, neutralized with Et₃N (20 μL), diluted with EtOAc, and filtered. The filtrate was washed with aqueous NaHCO₃ and aqueous NaCl, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 1:1 hexane–EtOAc to give 33 (46 mg, 28%), 35 (43 mg, 26%), and 37 (41 mg, 20%).

Compound **33** had $[\alpha]_D$ -17.7° (c 0.7); R_F 0.27 in 2:1 hexane–oxolane; n.m.r. data: δ_H 5.140 (t, 1 H, J 8.5 Hz, H-3c), 4.935 (t, 1 H, J 8.1 Hz, H-2c), 4.920 (dt, 1 H, J 1.7, 8.5 Hz, H-4c), 4.643 (s, 1 H, H-1b), 4.509 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1a), 4.337 (d, 1 H, $J_{1,2}$ 6.9 Hz, H-1c), 2.077, 2.064, and 2.031 (3 s, 9 H, COC H_3); δ_C 102.7 (${}^1J_{C,H}$ 162 Hz, C-1a), 99.7 (${}^1J_{C,H}$ 165 Hz, C-1), and 97.2 (${}^1J_{C,H}$ 160 Hz, C-1). Anal. Calc. for $C_{65}H_{72}O_{18}$: C, 68.41; H, 6.36. Found: C, 68.16; H, 6.38.

Acetylation of **33** gave **34**; n.m.r. data: $\delta_{\rm H}$ 5.284 (d, 1 H, $J_{2,3}$ 2.6 Hz, H-2b), 5.146 (t, 1 H, $J_{2,3}$, $J_{3,4}$ 8.5 Hz, H-3c), 2.081, 2.066, 2.041, and 2.015 (4 s, 12 H, COC H_3).

Compound 35 had $[\alpha]_D$ = 37.3° (c 1.0); R_F 0.30 in 2:1 hexane-oxolane; n.m.r. data: δ_H 5.149 (t, 1 H, $J_{2,3}$, $J_{3,4}$ 8.1 Hz, H-3c), 2.056, 2.004, and 1.880 (3 s, 9 H, COC H_3); δ_C 102.5 (${}^1J_{C,H}$ 158 Hz, C-1a), 100.5 (${}^1J_{C,H}$ 153 Hz, C-1), 100.0 (${}^1J_{C,H}$ 161 Hz, C-1), and 20.8 (3 C, COC H_3).

Anal. Calc. for C₆₅H₇₂O₁₈: C, 68.41; H, 6.36. Found: C, 68.08; H, 6.38.

Acetylation of **35** gave **36**; n.m.r. data: $\delta_{\rm H}$ 4.803 (d, 1 H, $J_{1,2}$ 4.9 Hz, H-1c), 4.504 (d, 1 H, $J_{1,2}$ 7.7 Hz, H-1a), 2.072, 2.012 (2 s, 6 H, COC H_3), and 1.897 (s, 6 H, COC H_3).

Compound 37 had $[\alpha]_D$ -52.9° (c 1.4); R_F 0.20 in 2:1 hexane-oxolane; n.m.r. data: δ_H 2.144, 2.086, 2.042, 2.012, 1.957, and 1.794 (6 s, 18 H, COC H_3); δ_C 102.5 ($^1J_{\rm C,H}$ 161 Hz, C-1a), 100.4 ($^1J_{\rm C,H}$ 154 Hz, C-1), 99.3 ($^1J_{\rm C,H}$ 158 Hz, C-1), and 95.3 ($^1J_{\rm C,H}$ 173 Hz, C-1).

Anal. Calc. for C₇₆H₈₆O₂₅: C, 65.23; H, 6.19. Found: C, 64.94; H, 6.21.

Deprotection of compound 37. — A solution of compound 37 (11 mg, 7.9 μmol) in MeOH (1 mL) and a 0.1 m solution of MeONa in MeOH (0.5 mL) was mixed and stirred for 16 h at 20°, when t.l.c. examination showed a single spot at $R_{\rm F}$ 0.76 in 11:2:1 EtOAc–EtOH–H₂O. The mxiture was neutralized with Amberlyst 15 resin, and filtered through Celite. The filtrate was concentrated in vacuo. A mixture of crude deacetylated product (10 mg) and 10% Pd–C (25 mg) in MeOH (1.5 mL) was stirred for 24 h at 20° and for 2 h at 50° under H₂, diluted with MeOH, and filtered through Celite. The filtrate was concentated in vacuo and the residue was chromatographed on Sephadex G-25 in H₂O to give the free tetrasaccharide β-D-Xylp-(1→3)-[β-D-Xylp-(1→2)]-β-D-Manp-(1→4)-D-Glc (4.5 mg, 97%); $R_{\rm F}$ 0.48 in 2:1:1 BuOH–AcOH–H₂O; n.m.r. data: $\delta_{\rm H}$ D₂O, Bu^tOH, 60°), 5.212 (d, 0.3 H, $J_{1,2}$ 3.7 Hz, H-1a α), 4.781 (s, 0.3 H, H-1b), 4.777 (s, 0.7 H, H-1b), 4.651 (d, 0.7 H, $J_{1,2}$ 8.1 Hz, H-1a β), 4.610 (d, 0.3 H, $J_{1,2}$ 7.6 Hz, H-1d), 4.582 (d, 0.7 H, $J_{1,2}$ 7.6 Hz, H-1d), 4.528 (d, 1 H, $J_{1,2}$ 7.3 Hz, H-1c), 4.386 (d, 0.7 H, $J_{2,3}$ 3.2 Hz, H-2b), and 4.381 (d, 0.3 H, $J_{2,3}$ 2.7 Hz, H-2b).

O-(2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyl)-(1→3)-O-(2,4,6-tri-O-acetyl-β-D-mannopyranosyl)-(1→4)-1,2,3,6-tetra-O-acetyl-D-glucopyranose (38). — A mixture of compound 29 (105 mg, 86 μ mol) and 10% Pd–C (115 mg) in MeOH (2.5 mL) was stirred under H₂ for 16 h at 20°, then for 4 h at 45°, diluted with MeOH, and filtered through Celite. The filtrate was concentrated in vacuo. A solution of the residual oil (51 mg) in pyridine (2.5 mL)-Ac₂O (2.0 mL) was stirred for 18 h at 20°, then evaporated in vacuo. Chromatography of the residue on SiO₂ in 3:2 toluene-EtOAc gave 38 (68 mg, 81%) as a 1:1 mixture of α and β anomers; R_F 0.43 in 1:1 toluene-EtOAc; n.m.r. data: δ_H 6.270 (d, 0.5 H, $J_{1,2}$ 3.7 Hz, H-1aα), 5.692 (d, 0.5 H, $J_{1,2}$ 8.5 Hz, H-1aβ), and 2.231–1.990 (20 s, 33 H, COCH₃).

Anal. Calc. for C₄₀H₅₄O₂₇: C, 49.69; H, 5.63. Found: C, 49.49; H, 5.45.

O-(2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyl)-(1 \rightarrow 3)-O-(2,4,6-tri-O-acetyl-β-D-mannopyranosyl)-(1 \rightarrow 4)-2,3,6-tri-O-acetyl-D-glucopyranose (39). — A mixture of compound 38 (65 mg, 67 μ mol) and NH₂NH₂·AcOH (7.4 mg, 80 μ mol) in DMF (3.5 mL) was stirred for 10 min at 55°, and then diluted with EtOAc. The organic layer was washed with aqueous NaHCO₃ and aqueous NaCl, dried

(MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO_2 in 3:2 EtOAc-toluene to give 37 (54 mg, 86%); R_F 0.21 in 3:2 EtOAc-toluene.

Anal. Calc. for C₃₈H₅₂O₂₆·H₂O: C, 48.41; H, 5.77. Found: C, 48.35; H, 5.49.

O-(2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyl)-($I \rightarrow 3$)-O-(2,4,6-tri-O-acetyl-β-D-mannopyranosyl)-($I \rightarrow 4$)-2,3,6-tri-O-acetyl-α-D-glucopyranosyl tri-chloroacetimidate (40). — To a solution of compound 39 (51 mg, 54 μmol) in Cl(CH₂)₂Cl (2.0 mL), stirred under argon at -20° (dry ice-CCl₄ bath), was added CCl₃CN (55 μL, 0.54 mmol) and a solution of DBU (0.8 μL, 5 μmol) in Cl(CH₂)₂Cl (0.5 mL). The mixture was stirred for 2 h at -20° , and then directly chromatographed on SiO₂ in 3:2 EtOAc-toluene to give 40 (51 mg, 88%); [α]_D +18.5° (c 0.3); R_F 0.35 in 3:2 EtOAc-toluene; n.m.r. data: δ_H 8.670 (s, 1 H, C=NH), 6.492 (d, 1 H, $J_{1,2}$ 3.7 Hz, H-1a), 4.645 (s, 1 H, H-1b), 2.228, 2.145, 2.125, 2.111 (6 H), 2.101, 2.082, 2.051, 2.020, and 1.992 (9 s, 30 H, COCH₃).

Anal. Calc. for $C_{40}H_{52}NO_{26}Cl_3$: C, 44.93; H, 4.90; N, 1.31. Found: C, 44.63; H, 4.90; N, 1.30.

O-(2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosyl)· $(l\rightarrow 3)$ -O-(2,4,6-tri-O-acetyl- β -D-mannopyranosyl)· $(l\rightarrow 4)$ -O-(2,3,6-tri-O-acetyl- β -D-glucopyranosyl- $(l\rightarrow 1)$ -(2S,3R,4E)-2-azido-3-O-(tert-butyldiphenylsilyl)-4-octadecene-1,3-diol (41) and O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)- $(l\rightarrow 3)$ -O-(2,4,6-tri-O-acetyl- β -D-mannopyranosyl)- $(l\rightarrow 4)$ -3,6-di-O-acetyl-1,2-O- $\{(1R)$ -1-[(2S,3R,4E)-2-azido-3-(tert-butyldiphenylsilyloxy)-4-octadecenyloxy]ethylidene}- α -D-glucopyranose (44). — (A). To a mixture of compound 6 (34 mg, 60 μ mol) and MS AW300 (1 g) in Cl(CH₂)₂Cl (1.5 mL), stirred under argon at -20° , was added a solution of compound 40 (48 mg, 45 μ mol) in Cl(CH₂)₂Cl (1.5 mL) and a solution of BF₃·Et₂O (1.8 μ L, 17 μ mol) in Cl(CH₂)₂Cl (0.5 mL). The mixture was stirred for 2 h at -20° , neutralized with Et₃N (10 μ L), diluted with EtOAc, and filtered through Celite. The filtrate was washed with aqueous NaHCO₃ and aqueous NaCl, dried (MgSO₄), and evaporated in vacuo. The residue was chromatographed on SiO₂ in 1:1 toluene-EtOAc to give 41 (3.5 mg, 5%) and 44 (39 mg, 59%).

Compound 41 had $[\alpha]_D$ -43.7° (c 0.7); R_F 0.55 in 1:1 toluene–EtOAc; n.m.r. data: 5.388 (d, $J_{2,3}$ 2.7 Hz, H-2b), 4.976 (br. s, 2 H, H-1c, 2c), 4.531 (s, 1 H, H-1b), 4.335 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1a), 2.203, 2.139, 2.120, 2.098 (6 H), 2.085, 2.058, 2.046, 1.987, and 1.872 (9 s, 30 H, COC H_3).

Anal. Calc. for $C_{72}H_{103}N_3O_{27}Si$: C, 58.80; H, 7.06; N, 2.86. Found: C, 58.98; H, 7.03; N, 2.78.

Compound 44 had $R_{\rm F}$ 0.39 in 1:1 toluene–EtOAc; n.m.r. data: $\delta_{\rm H}$ 5.603 (d, 1 H, $J_{1,2}$ 5.4 Hz, H-1a), 5.376 (dd, 1 H, J 8.2, 15.5 Hz, H-4')*, 5.152 (dt, 1 H, J 15.5, 6.9 Hz, H-5'), 4.980 (s, 1 H, H-1c), 4.711 (s, 1 H, H-1b), 2.209, 2.144, 2.125, 2.114, 2.094, 2.090, 2.068, 2.045, 1.992 (9 s, 27 H, COC H_3), 1.574 (s, 3 H, terminal C H_3), and 1.050 [s, 9 H, C(C H_3)₃].

^{*}Primed locants are used for atoms in the sphingenine moiety.

(B). To a mixture of compound 6 (21 mg, 38 μ mol) and MS4A (40 mg) in Cl(CH₂)₂Cl (1.5 mL), stirred under argon at -20°; was added a solution of compound 40 (29 mg, 27 μ mol) in Cl(CH₂)₂Cl (1.5 mL), then Me₃SiOTf (5.7 μ L, 30 μ mol). After being stirred for 2 h at -20°, the mixture was neutralized with Et₃N (33 μ L), diluted with EtOAc, and filtered through Celite. The filtrate was washed with aqueous NaHCO₃ and aqueous NaCl, dried (MgSO₄), and evaporated in vacuo. The residue was chromatographed on SiO₂ in 3:2 toluene–EtOAc to give 41 (21 mg, 51%).

Rearrangement of compound 44 to compound 41. — To a mixture of compound 44 (35 mg, 24 μ mol) and MS4A (300 mg) in Cl(CH₂)₂Cl (2.5 mL), stirred at 0° under argon, was added Me₃SiOTf (5.6 μ L, 29 μ mol). After being stirred for 2 h at 0°, the mixture was neutralized with Et₃N (20 μ L), diluted with EtOAc, and filtered through Celite. The filtrate was washed with aqueous NaHCO₃ and aqueous NaCl, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 1:1 toluene–EtOAc to give 41 (14 mg, 40%).

O-(2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosyl)- $(1\rightarrow 3)$ -(2,4,6-tri-O-acetyl- β -D-mannopyranosyl)- $(1\rightarrow 4)$ -(2,3,6-tri-O-acetyl- β -D-glucopyranosyl)- $(1\rightarrow 1)$ -3-Otert-butyldiphenylsilyl-2-N-tetracosanoyl-(4E)-sphingenine (42). — A mixture of compound 41 (13 mg, 8.8 µmol) and Lindlar catalyst (9.5 mg) in 1:1 EtOAc-EtOH (1.4 mL) was stirred for 46 h at 20° under H₂, diluted with EtOAc, and filtered through Celite. The filtrate was concentrated in vacuo to give a residual oil (14 mg), a solution of which in Cl(CH₂)₂Cl (2.5 mL) was added dropwise to a stirred mixture of tetracosanoic acid (6.5 mg, 18 µmol), 2-chloro-1-methylpyridinium iodide (4.5 mg, 18 μ mol), and Bu₃N (8.8 μ L, 37 μ mol) in Cl(CH₂)₂Cl (0.8 mL) at 20°. The mixture was stirred for 3 h at 20° and diluted with EtOAc. The organic layer was washed with H₂O and aqueous NaCl, dried (MgSO₄), and evaporated in vacuo. The residue was chromatographed on SiO₂ in 3:2 toluene-EtOAc to give 42 (8 mg, 51%); $[\alpha]_D$ -25.5° (c 0.7); R_F 0.48 in 1:1 toluene-EtOAc; n.m.r. data: $\delta_{\rm H}$ 4.980 (br. s, 2 H, H-1c,2c), 4.532 (s, 1 H, H-1b), 4.406 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1a), 2.12, 2.139, 2.122, 2.107, 2.100, 2.074, 2.049, 2.044, 1.988, and 1.963 (10 s, 30 H, COCH₃).

Anal. Calc. for $C_{96}H_{151}NO_{28}Si \cdot 1.5 C_6H_5CH_3$: C, 66.16; H, 8.49. Found: C, 66.25; H, 8.09.

Deprotection of 42 to form 1. — A mixture of compound 42 (6.4 mg, 3.5 μmol) in oxolane (2.0 mL) and a solution of M Bu₄NF in the same solvent (70 μL, 70 μmol) was stirred for 1 h at 20° and concentrated in vacuo. A solution of the residue in oxolane (1 mL) and 0.05 M NaOMe in MeOH (2 mL) was then stirred for 20 h at 20°, neutralized with Amberlyst 15 resin, and evaporated in vacuo. The residue was purified by successive chromatography on Sephadex LH-20, preparative h.p.t.l.c., and chromatography on Sephadex LH-20, all in 12:6:1 CHCl₃–MeOH–H₂O to give O-α-D-mannopyranosyl-(1→3)-O-β-D-mannopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→1)-2-N-tetracosanoyl-(4E)-sphingenine 1 (2.6 mg, 65%); [α]_D -5.7° (c 0.3, pyridine); R_F 0.46 in 12:6:1 CHCl₃–MeOH–H₂O;

n.m.r. data: $\delta_{\rm H}$ [99:1 (CD₃)₂SO–D₂O at 80°] 5.573 (td, 1 H, J 6.1, 15.4 Hz, H-5′), 5.387 (dd, 1 H, J 6.8, 15.4 Hz, H-4′), 4.925 (d, 1 H, J_{1,2} 1.5 Hz, H-1c), 4.558 (s, 1 H, H-1b), 4.176 (d, 1 H, J_{1,2} 7.8 Hz, H-1a), 3.976 (d, 1 H, J_{2,3} 2.9 Hz, H-2b); $\delta_{\rm H}$ (C₅D₅N, 80°), 5.793 (d, 1 H, J_{1,2} 1.2 Hz, H-1c), 5.146 (s, 1 H, H-1b), 4.724 (d, J_{1,2} 7.9 Hz, H-1a).

Deprotection of compound 41 to form 43. — A solution of compound 41 (11 mg, 7.0 μmol) in oxolane (2 mL) containing a solution of M Bu₄NF in the same solvent (115 μL, 115 μmol) was stirred for 2 h at 20° and evaporated in vacuo. The residue was then dissolved in oxolane (1 mL) plus 0.5 m NaOMe–MeOH (2.5 mL). After being stirred for 16 h at 20°, the mixture was neutralized with Amberlyst 15 resin and evaporated in vacuo. The residue was purified by successive chromatography on Sephadex LH-20, preparative h.p.t.l.c., and finally chromatography on Sephadex LH-20, all in 12:6:1 CHCl₃–MeOH–H₂O, to give O-α-D-mannopyranosyl-(1→3)-O-β-D-mannopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→1)-(2S,3R,4E)-2-azido-4-octadecene-1,3-diol (43; 4.8 mg, 83%); [α]_D −13.1° (c 0.5, pyridine), R_F 0.57 in 12:6:1 CHCl₃–MeOH–H₂O; n.m.r. data: δ_H [99:1 (CD₃)₂SO–D₂O, 80°] 5.681 (td, 1 H, J 5.9, 15.5 Hz, H-5′), 5.450 (dd, 1 H, J 6.8, 15.5 Hz, H-4′), 4.920 (d, 1 H, J_{1,2} 1.7 Hz, H-1c), 4.560 (s, 1 H, H-1b), 4.222 (d, 1 H, J_{1,2} 7.8 Hz, H-1a), 4.079 (t, 1 H, J 5.9 Hz, H-3′), 3.969 (d, 1 H, J_{2,3} 2.4 Hz, H-2b).

O-(2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosyl)- $(1\rightarrow 2)$ -O-(3,4,6-tri-O-acetyl- β -D-mannopyranosyl)- $(1\rightarrow 4)$ -1,2,3,6-tetra-O-acetyl-D-glucopyranose (45). — A mixture of compound 31 (116 mg, 96.0 μ mol) and 10% Pd–C (117 mg) in MeOH (2.5 mL) was stirred for 20 h at 20° under H₂, diluted with MeOH, and filtered through Celite. The filtrate was then concentrated *in vacuo*. A solution of the residue (54 mg) in pyridine (2.5 mL)–Ac₂O (2.0 mL) was stirred for 17 h at 20° and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 6:5 EtOActoluene to give 45 (89 mg, 96%) as a 3:7 mixture of α and β anomers; R_F 0.15 in 1:1 toluene–EtOAc; n.m.r. data: δ_H 6.274 (d, 0.3 H, $J_{1,2}$ 3.7 Hz, H-1a α), 5.743 (d, 0.7 H, $J_{1,2}$ 8.1 Hz, H-1a β), 4.944 (d, 0.7 H, $J_{1,2}$ 1.7 Hz, H-1c), 4.901 (d, 0.3 H, $J_{1,2}$ 1.7 Hz, H-1c), 4.523 (s, 1 H, H-1b).

Anal. Calc. for C₄₀H₅₄O₂₇: C, 49.69; H, 5.63. Found: C, 49.72; H, 5.58.

O-(2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosyl)- $(1\rightarrow 2)$ -O-(3,4,6-tri-O-acetyl- β -D-mannopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-acetyl-D-glucopyranose (46). — A mixture of compound 45 (76 mg, 79 μ mol) and NH₂NH₂·AcOH (8.7 mg, 95 μ mol) in DMF (2.5 mL) was stirred for 10 min at 50°, then diluted with EtOAc. The mixture was washed with H₂O, aqueous NaHCO₃, and aqueous NaCl, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 3:2 EtOAc-toluene to give 46 (65 mg, 89%); R_F 0.17 in 3:2 EtOAc-toluene; n.m.r. data: δ_H 2.126–2.013 (m, 30 H, COCH₃).

Anal. Calc. for C₃₈H₅₂O₂₆: C, 49.35; H, 5.67. Found: C, 49.34; H, 5.63.

O-(2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosyl)- $(1\rightarrow 2)$ -O-(3,4,6-tri-O-acetyl- β -D-mannopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-acetyl- α -D-glucopyranosyl trichloroacetimidate (47). — To a solution of compound 46 (43 mg, 46 μ mol) in Cl(CH₂)₂Cl (1.3 mL), stirred at -20° under argon, were added CCl₃CN (67 mg, 0.47 mmol) and DBU (0.7 mg, 5 μ mol). The mixture was stirred for 2 h at -20° , then directly chromatographed on SiO₂ in 3:2 EtOAc-toluene to give 47 (48 mg, 97%); $[\alpha]_D$ +16.5° (c 0.2); R_F 0.24 in 3:2 EtOAc-toluene; n.m.r. data: δ_H 8.672 (s, 1 H, C=NH), 6.501 (d, 1 H, $J_{1,2}$ 3.7 Hz, H-1a), 4.942 (d, 1 H, $J_{1,2}$ 1.7 Hz, H-1c), 4.562 (s, 1 H, H-1b), 2.150, 2.126 (6 H), 2.105 (6 H), 2.095, 2.076, 2.025, and 2.015 (6 H) (7 s, 30 H, COCH₃).

Anal. Calc. for $C_{40}H_{52}NO_{26}Cl_3 \cdot 0.1$ $C_6H_5CH_3$: C, 45.33; H, 4.94; N, 1.30. Found: C, 45.63; H, 4.92; N, 1.24.

O-(2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosyl)- $(1\rightarrow 2)$ -O-(3,4,6-tri-O-acetyl- β -D-mannopyranosyl)- $(1\rightarrow 4)$ -O-(2,3,6-tri-O-acetyl- β -D-glucopyranosyl)- $(1\rightarrow 1)$ -(2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (48) and O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -O-(3,4,6-tri-O-acetyl- β -D-mannopyranosyl- $(1\rightarrow 4)$ -3,6-di-O-acetyl-1,2-O- $\{(1R)$ -1-[(2S,3R,4E)-2-azido-3-benzoyloxy-4-octadecenyloxy]ethylidene}- α -D-glucopyranose (51). — To a mixture of compound 5 (26 mg, 62 μ mol) and MS AW300 (700 mg) in Cl(CH₂)₂Cl (1 mL), stirred at -20° under argon, was added a solution of compound 47 (48 mg, 45 μ mol) in Cl(CH₂)₂Cl (1.2 mL), and then BF₃·Et₂O (1.8 μ L, 17 μ mol). The mixture was stirred for 2 h at -20°, neutralized with Et₃N (10 μ L), diluted with EtOAc, and filtered through Celite. The filtrate was washed with aqueous NaHCO₃ and aqueous NaCl, dried (MgSO₄), and evaporated in vacuo. The residue was chromatographed on SiO₂ in 3:2 toluene-EtOAc to give 48 (20 mg, 32%) and 51 (6.0 mg, 10%).

Compound **48** had $[\alpha]_D$ -33.8° (c 0.7); R_F 0.42 in 1:1 toluene-EtOAc; n.m.r. data: δ_H 5.925 (td, 1 H, J 6.8, 14.8 Hz, H-5'), 5.594 (dd, 1 H, J 3.9, 8.1 Hz, H-3'), 5.540 (dd, 1 H, J 8.1, 14.8 Hz, H-4'), 4.916 (d, 1 H, $J_{1,2}$ 1.7 Hz, H-1c), 4.589 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1a), 4.492 (s, 1 H, H-1b), 2.147, 2.131, 2.121, 2.099, 2.076, 2.071, 2.061, 2.059, 2.022, 2.015 (10 s, 30 H, COC H_3), and 0.876 (t, 3 H, J 7.0 Hz, terminal CH_3).

Anal. Calc. for $C_{63}H_{89}N_3O_{28}$; C, 56.63; H, 6.72; N, 3.15. Found: C, 56.90; H, 6.72; N, 2.91.

Compound **51** had $[\alpha]_D$ -13.7° (c 0.3); R_F 0.37 in 1:1 toluene–EtOAc; n.m.r. data: δ_H 5.932 (td, 1 H, J 6.6, 14.4 Hz, H-5'), 5.642 (d, 1 H, $J_{1,2}$ 5.1 Hz, H-1a), 5.012 (d, 1 H, $J_{1,2}$ 1.7 Hz, H-1c), 4.713 (s, 1 H, H-1b), 2.150, 2.120 (9 H), 2.096, 2.086, 2.040, 2.032, 2.009 (7 s, 27 H, COC H_3), 1.707 (s, 3 H, CC H_3) of orthoester), and 0.878 (t, 3 H, J 6.8 Hz, terminal C H_3).

Anal. Calc. for $C_{63}H_{89}N_3O_{28}$: C, 56.63; H, 6.72; N, 3.15. Found: C, 56.58; H, 6.61; N, 2.96.

Conversion of compound 48 into compound 50 via 49. — A mixture of compound 48 (13 mg, 9.9 μ mol) and Lindlar catalyst (8.8 mg) in 1:1 EtOAc-EtOH (1.2 mL) was stirred for 20 h at 20° under H₂, diluted with 1:1 EtOAc-EtOH, and filtered through Celite, and the filtrate was evaporated in vacuo. A solution of the residue (15 mg) in Cl(CH₂)₂Cl (1.7 mL) was added dropwise to the mixture of tetracosanoic acid (7.3 mg, 20 μ mol), 2-chloro-1-methylpyridinium iodide (5.1 mg,

20 μmol), and Bu₃N (9.9 μL, 42 μmol) in Cl(CH₂)₂Cl (0.3 mL). The reaction mixture was stirred for 3 h at 20°, diluted with EtOAc, washed with water and aqueous NaCl, dried (MgSO₄), and evaporated *in vacuo*. The residue was chromatographed on SiO₂ in 1:1 toluene–EtOAc to give **49** (6.0 mg, 36%); $[\alpha]_D$ –17.0° (*c* 0.3), R_F 0.52) in 3:2 EtOAc–toluene; n.m.r. data: δ_H 8.012 (d, 2 H, *J* 7.3 Hz, COC₆ H_5), 7.552 (t, 1 H, *J* 7.3 Hz, COC₆ H_5), 7.442 (t, 2 H, *J* 7.3 Hz, COC₆ H_5), 5.874 (td, 1 H, *J* 6.8, 14.9 Hz, H-5'), 5.737 (d, 1 H, *J* 9.3 Hz, NH), 5.514 (dd, 1 H, *J* 7.3, 14.9 Hz, H-4'), 4.907 (d, 1 H, $J_{1,2}$ 2.0 Hz, H-1c), 4.503 (d, 1 H, $J_{1,2}$ 7.8 Hz, H-1a), 4.454 (s, 1 H, H-1b), 2.142, 2.128, 2.101, 2.090, 2.068, 2.062, 2.022 (6 H), 2.010, 1.979 (9 s, 30 H, COC H_3), and 0.879 (t, 6 H, *J* 7.0 Hz, terminal C H_3).

A mixture of compound **49** (5.0 mg, 30 μ mol) in oxolane (1 mL) and 0.03M NaOMe–MeOH (3 mL) was stirred for 16 h at 20°, neutralized with Amberlyst 15 resin, and concentrated *in vacuo*. The residue was chromatographed on Sephadex LH-20 in 12:6:1 CHCl₃–MeOH–H₂O to give **50** (2.3 mg, 67%); $[\alpha]_D$ +9.2° (c 0.1, pyridine); R_F 0.39 in 12:6:1 CHCl₃–MeOH–H₂O; n.m.r. data [99:1 (CD₃)₂SO–D₂O, 60°]: δ_H 5.556 (td, 1 H, J 6.6, 15.4 Hz, H-5′), 5.367 (dd, 1 H, J 6.8, 15.4 Hz, H-4′), 5.078 (d, 1 H, J_{1,2} 1.5 Hz, H-1c), 4.536 (s, 1 H, H-1b), 4.139 (d, 1 H, J 7.8 Hz, H-1a), and 3.925 (d, 1 H, J_{2,3} 2.7 Hz, H-2b).

Benzyl O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)- $(1\rightarrow 3)$ -O-[(2,3,4-tri-O-acetyl- β -D-xylopyranosyl)- $(1\rightarrow 2)$]-O-(4,6-di-O-benzyl- β -D-mannopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-benzyl- β -D-glucopyranoside (52). — To a mixture of compound **29** (85 mg, 70 μ mol) and MS AW300 (690 mg) in Cl(CH₂)₂Cl (2.5 mL) stored at -20° under argon, was added dropwise a solution of compound 7 (68 mg, 0.16 mmol) in Cl(CH₂)₂Cl (1 mL) and then a solution of BF₃·Et₂O (4.0 μ L, 32 μ mol) in Cl(CH₂)₂Cl (0.8 mL). After 3 h of stirring at -20°, a solution of compound 7 (64 mg, 0.15 mmol) in Cl(CH₂)₂Cl (1 mL) was again added. After 6 h, the mixture was neutralized with Et₃N (20 µL), diluted with EtOAc, and filtered through Celite. The organic layer was washed with aqueous NaHCO3 and aqueous NaCl, dried (MgSO₄), and concentrated in vacuo. The residue was successively chromatographed on SiO₂ in 5:4 hexane-EtOAc, then on Bio-beads SX-8 (2.2 cm × 1 m) in benzene to give **52** (62 mg, 60%); $[\alpha]_D$ -20.5° (c 1.4), R_F 0.22 in 5:4 hexane-EtOAc; n.m.r. data: $\delta_{\rm H}$ 7.4–7.1 (m, 30 H, Ph-H), 2.092, 2.069, 2.061, 2.040, 1.985, 1.931, and 1.878 (7 s, 21 H, COC H_3); δ_C 102.5 (${}^{1}J_{C,H}$ 158 Hz, C-1a), 100.1 (C-1), 99.9 (C-1), and 99.3 (C-1).

Anal. Calc. for $C_{79}H_{90}O_{27} \cdot 0.5 H_2O$: C, 64.00; H, 6.19. Found: C, 63.89; H, 6.03.

Deprotection of compound **52** to form **53**. — A solution of **52** (22 mg, 15 μ mol) in 0.04M NaOMe-MeOH (1.3 mL) was stirred for 14 h at 20°, neutralized with Amberlyst 15 resin, and concentrated *in vacuo*. A mixture of the residue and 10% Pd-C (25 mg) in MeOH (1.2 mL) was then stirred for 20 h at 20° under H₂, diluted with MeOH, and filtered through Celite. The filtrate was evaporated *in vacuo*, and the residue was chromatographed on Sephadex G-25 in H₂O to give **53** (7.7 mg, 83%); R_F 0.20 in 2:1:1 BuOH-AcOH-H₂O; n.m.r. data (D₂O, 60°): δ_H

5.209 (d, 0.35 H, $J_{1,2}$ 3.9 Hz, H-1a α), 5.126 (d, 1 H, $J_{1,2}$ 1.5 Hz, H-1c), 4.813 (s, 1 H, H-1b), 4.646 (d, 0.65 H, $J_{1,2}$ 8.1 Hz, H-1a β), 4.521 (d, 0.35 H, $J_{1,2}$ 7.6 Hz, H-1d), 4.496 (d, 0.65 H, $J_{1,2}$ 7.6 Hz, H-1d), 4.244 (d, 0.35 H, $J_{2,3}$ 2.9 Hz, H-2b), 4.236 (d, 0.65 H, $J_{2,3}$ 2.9 Hz, H-2b), 4.042 (dd, 1 H, $J_{1,2}$ 1.7, $J_{2,3}$ 3.4 Hz, H-2c).

O-(2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosyl)- $(1\rightarrow 3)$ -O-[(2,3,4-tri-O-acetyl- β -D-xylopyranosyl)- $(1\rightarrow 2)$]-O-(4,6-di-O-acetyl- β -D-mannopyranosyl)- $(1\rightarrow 4)$ -1,2,3,6-tetra-O-acetyl-D-glucopyranose (54). — A mixture of compound 52 (73 mg, 50 μ mol) and 10% Pd-C (81 mg) in MeOH (2 mL) was stirred for 26 h at 20° under H₂, diluted with MeOH, and filtered through Celite. The filtrate was concentrated in vacuo. A solution of the residue (44 mg) in pyridine (2.5 mL)-Ac₂O (2 mL) was then stirred for 6.5 h at 20°, and concentrated in vacuo. The residue was chromatographed on SiO₂ in 3:2 EtOAc-toluene to give 54 (49 mg, 83%) as a 1:2 mixture of α and β -anomers; R_F 0.17 in 1:1 toluene-EtOAc; n.m.r. data: δ_H 6.250 (d, 0.33 H, $J_{1,2}$ 3.3 Hz, H-1a α) and 5.716 (d, 0.67 H, $J_{1,2}$ 8.3 Hz, H-1a β).

Anal. Calc. for $C_{49}H_{66}O_{33}$: C, 49.75; H, 5.62. Found: C, 49.81; H, 5.46.

O-(2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosyl)- $(1\rightarrow 3)$ -O-[(2,3,4-tri-O-acetyl- β -D-xylopyranosyl)- $(1\rightarrow 2)$]-O-(4,6-di-O-acetyl- β -D-mannopyranosyl)- $(1\rightarrow 4)$ -2,3,6-tri-O-acetyl- α -D-glucopyranosyl trichloroacetimidate (56). — A mixture of compound 54 (20 mg, 17 μ mol) and NH₂NH₂·AcOH (2.0 mg, 21 μ mol) in DMF (1.5 mL) was stirred for 15 min at 50°. After addition of further NH₂NH₂·AcOH (2.0 mg), stirring was continued for 10 min at 55°, then the mixture was diluted with EtOAc. The solution was washed with aqueous NaHCO₃ and aqueous NaCl, dried (MgSO₄), and evaporated in vacuo. The residue was chromatographed on SiO₂ in 3:2 EtOAc-toluene to give 55 (17 mg, 88%); R_F 0.12 in 2:1 EtOAc-toluene.

A solution of **55** (15 mg, 13 μ mol) in Cl(CH₂)₂Cl (1.5 mL), stirred at -20° under argon, was treated with CCl₃CN (13 μ L, 0.13 mmol) and a solution of DBU (0.4 μ L, 3 μ mol) in Cl(CH₂)₂Cl (0.2 mL). The mixture was stirred for 2.5 h at -20° and directly chromatographed on SiO₂ in 3:2 EtOAc–toluene to give **56** (14.5 mg, 88%); $[\alpha]_{\rm D}$ -17.7° (c 1.1); $R_{\rm F}$ 0.22 in 3:2 EtOAc–toluene; n.m.r. data: $\delta_{\rm H}$ 8.684 (s, 1 H, C=NH), 6.494 (d, 1 H, $J_{1,2}$ 3.7 Hz, H-1a), 5.376 (d, 1 H, $J_{1,2}$ 6.3 Hz, H-1d), 5.031 (d, 1 H, $J_{1,2}$ 1.9 Hz, H-1c), 4.563 (s, 1 H, H-1b), 2.153, 2.134, 2.122, 2.108 (6 H), 2.093, 2.087, 2.074, 2.056, 2.043, 2.023, and 1.998 (11 s, 36 H, COCH₃).

Anal. Calc. for $C_{49}H_{64}NO_{32}Cl_3 \cdot 0.5 C_6H_5CH_3$: C, 47.36; H, 5.15; N, 1.05. Found: C, 47.00; H, 5.15; N, 1.03.

O-(2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosyl)- $(1\rightarrow 3)$ -O-[(2,3,4-tri-O-acetyl- β -D-xylopyranosyl)- $(1\rightarrow 2)$]-O-(4,6-di-O-acetyl- β -D-mannopyranosyl)- $(1\rightarrow 4)$ -O-(2,3,6-tri-O-acetyl- β -D-glucopyranosyl)- $(1\rightarrow 1)$ -(2S,3R,4E)-2-azido-3-O-(tert-butyldiphenylsilyl)-4-octadecene-1,3-diol (57). — To a mixture of compound 6 (13.4 mg, 24 μ mol) and MS4A (500 mg) in Cl(CH₂)₂Cl (1.5 mL), stirred at -20° under argon, was added successively a solution of compound 56 (21 mg, 17 μ mol) in Cl(CH₂)₂Cl (1.5 mL) and a solution of TMSOTf (3.9 μ L, 20 μ mol) in Cl(CH₂)₂Cl

(0.5 mL). After being stirred for 1 h at -20° , the mixture was neutralized with Et₃N (30 μ L), diluted with EtOAc, and filtered through Celite. The filtrate was washed with aqueous NaHCO₃ and aqueous NaCl, dried (MgSO₄), and evaporated in vacuo. The residue was chromatographed on SiO₂ in 1:1 toluene–EtOAc to give **57** (17 mg, 60%); $[\alpha]_D$ -60.0° (c 0.8); R_F 0.32 in 1:1 toluene–EtOAc; n.m.r. data: δ_H 7.7–7.6 (m, 4 H, Ph-H), 7.5–7.3 (m, 6 H, Ph-H), 2.150, 2.133, 2.114, 2.108, 2.090, 2.085 (9 H), 2.043, 1.996 (6 H), 1.874 (9 s, 36 H, COCH₃), 1.049 [s, 9 H, C(CH₃)₃], and 0.882 (t, 3 H, J 7.0 Hz, terminal CH₃).

Anal. Calc. for $C_{81}H_{115}N_3O_{33}Si: C, 57.67; H, 6.87; N, 2.49$. Found: C, 57.83; H, 6.70; N, 2.15.

Conversion of compound 57 into 2 via compound 58. — A mixture of compound 57 (14 mg, 8.5 μmol) and Lindlar catalyst (17 mg) in 1:1 EtOAc-EtOH (1.4 mL) was stirred for 46 h at 20° under H₂, diluted with EtOAc, and filtered through Celite. Concentration of the filtrate in vacuo gave a residue (15 mg). A solution of this residue in $Cl(CH_2)_2Cl$ (1.8 mL) was then added to a mixture of tetracosanoic acid (6.3 mg, 17 μ mol), 2-chloro-1-methylpyridinium iodide (4.3 mg, 17 μ mol), and Bu₃N (8.1 μ L, 36 μ mol) in Cl(CH₂)₂Cl (0.8 mL). The reaction mixture was stirred for 3 h at 20°, diluted with EtOAc, washed with water and aqueous NaCl, dried (MgSO₄), and evaporated in vacuo. The residue was purified by chromatography on SiO₂ in 4:3 EtOAc-hexane and then by preparative h.p.t.l.c. in 2:1 EtOAc-hexane to give O-(2,3,4,6-tetra-O-acetyl- α -D-mannopyranosyl)-(1 \rightarrow 3)-O- $[(2,3,4-\text{tri-}O-\text{acetyl-}\beta-\text{D-xylopyranosyl})-(1\rightarrow 2)]-O-(4,6-\text{di-}O-\text{acetyl-}\beta-\text{D-manno-})$ gyranosyl)- $(1\rightarrow 4)$ -O-(2,3,6-tri-O-acetyl- β -D-glucopyranosyl)- $(1\rightarrow 1)$ -3-O-(tert-butyldiphenylsilyl)-2-N-tetracosanoyl-(4E)-sphingenine 58 (8.2 mg, 49%); $[\alpha]_D$ -41.7° (c 0.4); $R_{\rm F}$ 0.62 in 2:1 EtOAc-hexane; n.m.r. data: $\delta_{\rm H}$ 7.7-7.6 (m, 4 H, Ph-H), 7.45–7.3 (m, 6 H, Ph-H), 2.151, 2.141, 2.125, 2.118, 2.098, 2.094, 2.090, 2.048 (6 H), 2.010, 1.999, 1.968 (11 s, 36 H, COC H_3), 1.006 [s, 9 H, C(C H_3)₃], and 0.880 (t, 6 H, J 6.5 Hz, terminal CH_3).

A mixture of compound **58** (7.4 mg, 3.8 μ mol) in oxolane (1.5 mL) and a solution of M Bu₄NF in oxolane (75 μ L, 75 μ mol) was stirred for 1 h at 20° under argon, and concentrated *in vacuo*. The residue was dissolved in THF (0.8 mL) and 0.05M NaOMe–MeOH (1.7 mL), and this solution was stirred for 22 h at 20°, neutralized with Amberlyst 15 resin, and concentrated *in vacuo*. The residue was purified by successive chromatography on Sephadex LH-20, preparative h.p.t.l.c., and chromatography on Sephadex LH-20, all in 12:6:1 CHCl₃–MeOH–H₂O, to give **2** (3.2 mg, 66%); $[\alpha]_D$ –14.8° (c 0.3, pyridine); R_F 0.42 in 12:6:1 CHCl₃–MeOH–H₂O; n.m.r. data: δ_H [99:1 (CD₃)₂SO–D₂O, 80°] 5.573 (td, 1 H, J 7.0, 15.0 Hz, H-5'), 5.385 (dd, 1 H, J 7.6, 15.0 Hz, H-4'), 4.948 (s, 1 H, H-1c), 4.659 (s, 1 H, H-1b), 4.432 (d, 1 H, J_{1,2} 6.4 Hz, H-1d), 4.173 (d, 1 H, J_{1,2} 7.6 Hz, H-1a), 4.064 (s, 1 H, H-2b), 2.051 (t, 2 H, J 7.6 Hz, COCH₂CH₂), and 0.857 (t, 6 H, J 6.7 Hz, terminal CH₃); δ_H (C₅D₅N, 80°) 5.886 (s, 1 H, H-1c), 5.275 (d, 1 H, J_{1,2} 6.4 Hz, H-1d), 5.196 (s, 1 H, H-1b), and 4.680 (d, 1 H, J_{1,2} 7.8 Hz, H-1a).

 $O-(2,3,4,6-Tetra-O-acetyl-\alpha-D-mannopyranosyl)-(1\rightarrow 3)-O-[(2,3,4-tri-O-acetyl-\alpha-D-mannopyranosyl)-(1\rightarrow 3)-O-[(2,3,4-tri-O-acetyl-\alpha-D-acetyl-\alpha-D-acetyl-ac$ $acetyl - \beta - D - xylopyranosyl) - (1 \rightarrow 2) - O - (4,6 - di - O - acetyl - \beta - D - mannopyranosyl) - (1 \rightarrow 2) - O - (4,6 - di - O - acetyl - \beta - D - mannopyranosyl) - (1 \rightarrow 2) - O - (4,6 - di - O - acetyl - \beta - D - mannopyranosyl) - (1 \rightarrow 2) - O - (4,6 - di - O - acetyl - \beta - D - mannopyranosyl) - (1 \rightarrow 2) - O - (4,6 - di - O - acetyl - \beta - D - mannopyranosyl) - (1 \rightarrow 2) - O - (2,6 - di - O - acetyl - \beta - D - mannopyranosyl) - (1 \rightarrow 2) - O - (2,6 - di - O - acetyl - \beta - D - mannopyranosyl) - (2 - di - O - acetyl - \beta - D - mannopyranosyl) - (2 - di - O - acetyl - \beta - D - mannopyranosyl) - (2 - di - O - acetyl - B - D - mannopyranosyl) - (2 - di - O - acetyl - B - D - mannopyranosyl) - (2 - di - O - acetyl - B - D - mannopyranosyl) - (2 - di - O - acetyl - B - D - mannopyranosyl) - (2 - di - O - acetyl - B - D - acetyl$ $(1\rightarrow 4)$ -O-(2,3,6-tri-O-acetyl- β -D-glucopyranosyl)- $(1\rightarrow 1)$ -(2S,3R,4E)-2-azido-3-Obenzoyl-4-octadecene-1,3-diol (59). — To a mixture of compound 5 (7.0 mg, 13 μmol) and MS4A (400 mg) in Cl(CH₂)₂Cl (1.5 mL), stirred at -20° under argon, were added successively a solution of compound 56 (12 mg, 9.6 μ mol) in $Cl(CH_2)_2Cl$ (1.5 mL) and a solution of TMSOTf (2.2 μ L, 11.5 μ mol) in $Cl(CH_2)_2Cl$ (0.3 mL). The mixture was stirred for 40 min at -20° , neutralized with Et₃N (20 μL), diluted with EtOAc, and filtered through Celite. The filtrate was washed with aqueous NaHCO₃ and aqueous NaCl, dried (MgSO₄), and evaporated in vacuo. The residue was chromatographed on SiO₂ in 1:1 EtOAc-toluene to give 59 (9.4 mg, 64%); $[\alpha]_D = -41.4^\circ$ (c 0.8); $R_F = 0.34$ in 1:1 toluene-EtOAc; n.m.r. data: δ_H 8.049 (d, 2 H, J 7.7 Hz, Ph-H), 7.579 (t, 1 H, J 7.7 Hz, Ph-H), 7.454 (t, 2 H, J 7.7 Hz, Ph-H), 5.924 (td, 1 H, J 6.8, 14.7 Hz, H-5'), 5.599 (dd, 1 H, J 3.9, 8.1 Hz, H-3'), 5.541 (dd, 1 H, J 8.1, 14.7 Hz, H-4'), 4.551 (d, 1 H, J_{1.2}7.8 Hz, H-1a), 4.434 (s, 1 H, H-1b), 2.149, 2.134, 2.114 (6 H), 2.091, 2.088, 2.079, 2.074, 2.057, 2.042, 2.004, 1.996 (11 s, 36 H, COC H_3), and 0.878 (t, 3 H, J 6.8 Hz, terminal C H_3).

Anal. Calc. for $C_{72}H_{101}N_3O_{34}$: C, 55.70; H, 6.56; N, 2.71. Found: C, 55.64; H, 6.35; N, 2.42.

Conversion of compound **59** into compound **60**. — A solution of compound **59** (6.5 mg, 4.2 μ mol) in oxolane (0.75 mL) and 0.05M NaOMe-MeOH (1.75 mL) was stirred for 21 h at 20°, then neutralized with Amberlite 15 resin and concentrated in vacuo. The residue was chromatographed on Sephadex LH-20 in 12:6:1 CHCl₃-MeOH-H₂O to give **60** (3.9 mg, 98%); [α]_D -23.5° (c 0.4; pyridine); R_F 0.23 in 12:6:1 CHCl₃-MeOH-H₂O; n.m.r. data [99:1 (CD₃)₂SO-D₂O, 20°]: δ _H 5.660 (td, 1 H, J 7.0, 14.7 Hz, H-5'), 5.432 (dd, 1 H, J 7.0, 15.3 Hz, H-4'), 4.868 (s, 1 H, H-1c), 4.651 (s, 1 H, H-1b), 4.308 (d, 1 H, J_{1,2} 7.3 Hz, H-1d), 4.191 (d, 1 H, J_{1,2} 7.9 Hz, H-1a), 4.070 (t, 1 H, J 6.0 Hz, H-3'), 4.045 (d, 1 H, J_{2,3} 2.5 Hz, H-2b), 2.000 (m, 1 H, H-6'), and 0.856 (t, 3 H, J 6.7 Hz, terminal CH₃).

ACKNOWLEDGMENTS

This work was partly supported by Special Coordination Funds of the Science and Technology Agency of the Japanese Government. The authors thank Dr. J. Uzawa and Mrs. T. Chijimatsu for recording and measuring the n.m.r. spectra and Dr. H. Yamazaki and his staff for the elemental analyses. We also thank Ms. A. Takahashi and Ms. K. Moriwaki for their technical assistance.

REFERENCES

- 1 S. NUNOMURA AND T. OGAWA, Tetrahedron Lett., 29 (1988) 5681-5684.
- 2 O. ITASAKA, M. SUGITA, H. KATAOKA, AND T. HORI, Biochim. Biophys. Acta., 751 (1983) 8-13.
- M. Sugita, T. Yamamoto, S. Masuda, O. Itasaka, and T. Hori, J. Biochem. (Tokyo), 90 (1981) 1529–1535;
 T. Hori, M. Sugita, S. Ando, M. Kuwahara, K. Kumauchi, E. Sugie, and O. Itasaka, J. Biol. Chem., 256 (1981) 10979–10985.

- 4 M. Sugita, Y. Nakano, T. Nose, O. Itasaka, and T. Hori, J. Biochem. (Tokyo), 95 (1984) 47–55.
- 5 A. MAKITA AND N. TANIGUCHI, in H. WIEGANDT (Ed.), New Comprehensive Biochemistry, Vol. 10, Glycolipids, Elsevier, New York, 1985, pp. 1-100.
- 6 K. Koike, M. Mori, Y. Ito, Y. Nakahara, and T. Ogawa, Glycoconjugate J., 40 (1987) 109-116.
- 7 R. R. SCHMIDT AND P. ZIMMERMANN, Angew. Chem. Int. Ed. Engl., 25 (1986) 725–726; R. R. SCHMIDT, T. BÄR, AND H.-J. APELL, ibid., 26 (1987) 793–794; Y. ITO, S. SATO, M. MORI, AND T. OGAWA, J. Carbohydr. Chem., 7 (1988) 359–376.
- J.-M. Petit, J.-C. Jacquinet, and P. Sinaÿ, Carbohydr. Res., 82 (1980) 130–134; P. Fügedi,
 A. Lipták, P. Nánási, and J. Szejtli, ibid., 104 (1982) 55–67; K. Takeo, K. Okushio,
 K. Fukuyama, and T. Kuge, ibid., 121 (1983) 163–173.
- 9 A. KLEMER, Chem. Ber., 92 (1959) 218-226.
- 10 T. OGAWA AND M. MATSUI, Carbohydr. Res., 62 (1978) C1-C4; Tetrahedron, 37 (1981) 2363-2369.
- 11 A. VEYRIÈRES, J. Chem. Soc., Perkin Trans. 1, (1981) 1626-1629.
- H. Paulsen and O. Lockhoff, *Chem. Ber.*, 114 (1981) 3102–3114; H. Paulsen, P. Lebuhn, and
 O. Lockhoff, *Carbohydr. Res.*, 103 (1982) c7–c11.
- K. BOCK, I. LUNDT. AND C. PEDERSEN, Tetrahedron Lett., (1973) 1037–1040; K. BOCK AND
 C. PEDERSEN, J. Chem. Soc., Perkin Trans 2, (1974) 293–297.
- 14 E. J. COREY AND J. W. SUGGS, J. Org. Chem., 38 (1973) 3224; P. A. GENT AND R. GIGG, J. Chem. Soc., Chem. Commun., (1974) 277–278.
- 15 Y. ITO AND T. OGAWA, Agr. Biol. Chem., 50 (1986) 3227-3230.
- 16 R. GIGG AND C. D. WARREN, J. Chem. Soc. (C), (1968) 1903-1911.
- 17 T. OGAWA AND M. MATSUI, Carbohydr. Res., 54 (1977) c17-c21.
- 18 S. SATO, M. MORI, Y. ITO, AND T. OGAWA, Carbohydr. Res., 155 (1986) C6-C10.
- 19 R. R. SCHMIDT AND J. MICHEL, Angew. Chem. Int. Ed. Engl., 19 (1980) 732-735.
- 20 G. Excoffier, D. Gagnaire, J.-P. Utille, Carbohydr. Res., 39 (1975) 368-373.
- H. Vorbrüggen and K. Krolikiewicz, Angew. Chem. Int. Ed. Engl., 14 (1975) 421–422;
 S. Murata, M. Suzuki, and R. Noyori, Tetrahedron Lett., (1980) 2527–2528;
 T. Ogawa, K. Beppu, and S. Nakabayashi, Carbohydr. Res., 93 (1981) c6–c9.
- 22 E. J. COREY, K. C. NICOLAOU, R. D. BALANSON, AND Y. MACHIDA, Synthesis, (1975) 590-591.
- 23 E. BALD, K. SAIGO, AND T. MUKAIYAMA, Chem. Lett., (1975) 1163-1166.
- 24 J. N. SCARSDALE, J. H. PRESTEGARD, S. ANDO, T. HORI, AND R. K. YU, Carbohydr. Res., 155 (1986) 45-56.
- 24a Y. Ito, S. Sato, M. Mori, and T. Ogawa, J. Carbohydr. Chem., 7 (1988) 359-376.
- 25 M. BESSODES, D. KOMIOTIS, AND K. ANTONAKIS, Tetrahedron Lett., 27 (1986) 579-580.
- 26 M. KITAMURA, M. ISOBE, Y. ICHIKAWA, AND T. GOTO, J. Am. Chem. Soc., 106 (1984) 3252-3257.
- 27 E. FISCHER AND R. OETKER, Ber., 46 (1913) 4029–4040; P. A. LEVENE, J. Biol. Chem., 59 (1924) 141–144; P. A. LEVENE AND R. S. TIPSON, ibid., 90 (1931) 89–98.